According to the textbook (p154):
Variables with distributions that are substantially non-normal will have greater discrepancies between percentile ranks compared computed using the two methods, and variables with relatively normal distributions will yield similar percentile ranks.
collgpa | Rank_CollGPA | PerRank_CollGPA (Not assuming Normality) | PerRank_CollGPA (Standardised) (Assuming Normality) | Difference in Rank (Not assuming Normality - Assuming Normality) | Zcollgpa |
1.17 | 1 | 1 | 0 | 1 | -2.92232 |
1.48 | 2 | 2 | 1 | 1 | -2.23451 |
1.58 | 3 | 3 | 2 | 1 | -2.01264 |
1.71 | 4 | 4 | 4 | 0 | -1.7242 |
1.75 | 6 | 7 | 5 | 2 | -1.63545 |
1.75 | 6 | 7 | 5 | 2 | -1.63545 |
1.79 | 7 | 8 | 6 | 2 | -1.5467 |
1.84 | 8 | 9 | 8 | 1 | -1.43577 |
1.91 | 9 | 10 | 10 | 0 | -1.28045 |
1.94 | 10 | 11 | 11 | 0 | -1.21389 |
2 | 11 | 12 | 14 | -2 | -1.08077 |
2.01 | 12 | 13 | 14 | -1 | -1.05858 |
2.05 | 15 | 17 | 17 | 0 | -0.96983 |
2.05 | 15 | 17 | 17 | 0 | -0.96983 |
2.05 | 15 | 17 | 17 | 0 | -0.96983 |
2.06 | 17 | 19 | 17 | 2 | -0.94765 |
2.06 | 17 | 19 | 17 | 2 | -0.94765 |
2.08 | 18 | 20 | 18 | 2 | -0.90327 |
2.1 | 20 | 22 | 20 | 2 | -0.8589 |
2.1 | 20 | 22 | 20 | 2 | -0.8589 |
2.13 | 21 | 23 | 21 | 2 | -0.79233 |
2.15 | 22 | 24 | 23 | 1 | -0.74796 |
2.18 | 23 | 26 | 25 | 1 | -0.6814 |
2.19 | 24 | 27 | 25 | 2 | -0.65921 |
2.2 | 25 | 28 | 26 | 2 | -0.63702 |
2.22 | 26 | 29 | 28 | 1 | -0.59265 |
2.24 | 27 | 30 | 29 | 1 | -0.54827 |
2.25 | 28 | 31 | 30 | 1 | -0.52609 |
2.26 | 29 | 32 | 31 | 1 | -0.5039 |
2.27 | 30 | 33 | 32 | 1 | -0.48171 |
2.32 | 32 | 36 | 36 | 0 | -0.37077 |
2.32 | 32 | 36 | 36 | 0 | -0.37077 |
2.34 | 33 | 37 | 37 | 0 | -0.3264 |
2.36 | 34 | 38 | 39 | -1 | -0.28203 |
2.37 | 36 | 40 | 40 | 0 | -0.25984 |
2.37 | 36 | 40 | 40 | 0 | -0.25984 |
2.38 | 37 | 41 | 41 | 0 | -0.23765 |
2.41 | 38 | 42 | 43 | -1 | -0.17109 |
2.44 | 40 | 44 | 46 | -2 | -0.10453 |
2.44 | 40 | 44 | 46 | -2 | -0.10453 |
2.45 | 41 | 46 | 47 | -1 | -0.08234 |
2.46 | 42 | 47 | 48 | -1 | -0.06015 |
2.47 | 43 | 48 | 48 | 0 | -0.03796 |
2.48 | 44 | 49 | 49 | 0 | -0.01578 |
2.56 | 45 | 50 | 56 | -6 | 0.16172 |
2.57 | 47 | 52 | 57 | -5 | 0.18391 |
2.57 | 47 | 52 | 57 | -5 | 0.18391 |
2.58 | 48 | 53 | 58 | -5 | 0.2061 |
2.59 | 50 | 56 | 59 | -3 | 0.22828 |
2.59 | 50 | 56 | 59 | -3 | 0.22828 |
2.6 | 51 | 57 | 60 | -3 | 0.25047 |
2.61 | 52 | 58 | 61 | -3 | 0.27266 |
2.62 | 54 | 60 | 62 | -2 | 0.29484 |
2.62 | 54 | 60 | 62 | -2 | 0.29484 |
2.64 | 58 | 64 | 63 | 1 | 0.33922 |
2.64 | 58 | 64 | 63 | 1 | 0.33922 |
2.64 | 58 | 64 | 63 | 1 | 0.33922 |
2.64 | 58 | 64 | 63 | 1 | 0.33922 |
2.65 | 59 | 66 | 64 | 2 | 0.36141 |
2.66 | 60 | 67 | 65 | 2 | 0.38359 |
2.67 | 62 | 69 | 66 | 3 | 0.40578 |
2.67 | 62 | 69 | 66 | 3 | 0.40578 |
2.69 | 63 | 70 | 67 | 3 | 0.45016 |
2.72 | 64 | 71 | 70 | 1 | 0.51672 |
2.74 | 65 | 72 | 71 | 1 | 0.56109 |
2.75 | 67 | 74 | 72 | 2 | 0.58328 |
2.75 | 67 | 74 | 72 | 2 | 0.58328 |
2.79 | 68 | 76 | 75 | 1 | 0.67203 |
2.8 | 69 | 77 | 76 | 1 | 0.69422 |
2.81 | 70 | 78 | 76 | 2 | 0.7164 |
2.82 | 71 | 79 | 77 | 2 | 0.73859 |
2.85 | 72 | 80 | 79 | 1 | 0.80515 |
2.86 | 73 | 81 | 80 | 1 | 0.82734 |
2.93 | 75 | 83 | 84 | -1 | 0.98265 |
2.93 | 75 | 83 | 84 | -1 | 0.98265 |
2.94 | 77 | 86 | 84 | 2 | 1.00484 |
2.94 | 77 | 86 | 84 | 2 | 1.00484 |
2.95 | 78 | 87 | 85 | 2 | 1.02703 |
3.03 | 80 | 89 | 89 | 0 | 1.20452 |
3.03 | 80 | 89 | 89 | 0 | 1.20452 |
3.06 | 81 | 90 | 90 | 0 | 1.27109 |
3.07 | 82 | 91 | 90 | 1 | 1.29327 |
3.09 | 83 | 92 | 91 | 1 | 1.33765 |
3.13 | 84 | 93 | 92 | 1 | 1.4264 |
3.14 | 85 | 94 | 93 | 1 | 1.44859 |
3.25 | 86 | 96 | 95 | 1 | 1.69265 |
3.31 | 87 | 97 | 97 | 0 | 1.82577 |
3.34 | 88 | 98 | 97 | 1 | 1.89233 |
3.37 | 89 | 99 | 97 | 2 | 1.95889 |
3.45 | 90 | 100 | 98 | 2 | 2.13639 |
No comments:
Post a Comment